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Item responses on an operational state assessment were calibrated and analyzed
using decision theory with the size of the calibration sample being the primary
manipulated variable and score-group classification accuracy being the primary
assessment goal. Simple decision theory was shown to be highly accurate in terms
of  placing individuals into the appropriate score categories. If the intent of an
assessment is to classify individuals into discrete categories or determine the
proportions of examinees within each score category, then decision theory provides
an attractive alternative to classical or modern measurement theory.

Classical measurement theory and item response
theory are concerned primarily with rank ordering
examinees across an ability continuum. But one is
often interested in just classifying examinees into
one of a finite number of discrete categories, such
as pass / fail or below-basic / basic / proficient /
excellent. Sometimes, one is interested in an even
more basic outcome, such as just the proportion of
all examinees whose ability fall within each
discrete category. Classification is a simpler
outcome than rank ordering and a simpler model
should suffice. This paper presents and evaluates
the use of simple decision theory as a tool for
classifying examinees based on their item
response patterns using actual data from a state-
wide examination.

The primary research question in this study is
whether decision theory can produce results that
are comparable to that of the more complicated
IRT classification procedures. An evaluation of
the model is presented by examining the
classification accuracy of tests scored using
decision theory and examining the relationship
between accuracy and the number of pilot test
examinees used to calibrate decision theory item
parameters.

The literature on the use of decision theory to
analyze item responses is fairly scant. There was a
slight surge of interest in the 1970s (e.g.,
Hambleton and Novick, 1973; Swaminathan,
Swaminathan,  Hambleton & Algina, 1975,
Huynh, 1976; van der Linden and Mellenbergh,
1978) as a tool to score criterion-referenced tests.
Macready and Dayton (1992), Welch and Frick
(1993) and Vos (1999) used decision theory as the
basis for adaptive testing within a latent class
framework. Rudner (2002a) recently provided an
evaluation of the model using simulated response
patterns. Most of the measurement research to
date, however, has applied decision theory to test
batteries or as a supplement to item response
theory and specific latent class models.

Background

An excellent overview of decision theory can be
found in Melsa and Cohn (1978). The objective
here is to form a best guess as to the mastery state
(classification or latent state) of an individual
examinee based on the examinee’s item responses,
a priori item information, and a priori population
classification proportions. While most applications
of decision theory are based on continuous
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random variables, our application uses the items
within a test as the independent random variables.

One starts with the following:
K possible mastery states, that take on values

mk. 
A test composed of N items.
An item response vector, z = [z1, z2, ..., zN] for

each examinee. There is no restriction on
the values of zi. They can be dichotomous
or polytomous, nominal or ordinal.

Based on a piloting the items with a calibration
sample, one obtains

P(mk)  the probability of a randomly selected
examinee belonging in mastery state mk
(e.g., an approximation of the portion of
examinees below basic, basic, proficient
and advanced).

P(zi|mk)  the probability of response zi  given
the k-th mastery state.

After calibration, the model is applied to a set of
new examinees. For each examinee, one first
computes the K different probabilities of the
response vector that correspond to the each of the
K mastery states. Assuming local independence,

. 

That is, the probability of the response vector is
equal to the product of the conditional
probabilities of the item responses. In decision
theory, the local independence assumption is also
called the “naive Bayes” assumption. One naively
assumes the assumption is true and proceeds with
the analysis.

An estimate of the examinee’s mastery state is
then formed using the priors and observations. By
Bayes’ Theorem,

.  (1)   

The posterior probability P(mk|z) that the
examinee is of mastery state mk given his response
vector is equal to the product of a normalizing
constant (c), the probability of the response vector

given mk, and the prior classification probability.
Again, for each examinee, there are K
probabilities, one for each mastery state.

One common rule for classifying an examinee
based on these K probabilities is to select the
category with the maximum a posteriori
probability (MAP). An alternate approach is
Bayes Risk Criterion, also called the Minimum
Loss Criterion and the Optimal Decision Criterion.
Costs are assigned to each correct and incorrect
decision and then one makes the decision that
minimizes the total average cost. 

Data

The primary analysis in this study used the scored
item responses made by 18,453 students who took
the 10 items in the Reading, Grade 8, Booklet A of
the 2001 Maryland State Performance Assessment
Program (MSPAP). The test is composed of
performance items scored using a 3- or 4- point
scoring rubric. Individual ability scores computed
by the state using the Generalized Partial Credit
Model (Muraki, 1992) were first mapped to scaled
scores and then to a 5-point performance scale
using pre-defined cut scores. With the small
number of items per subject per booklet, the state
only reported aggregated scores in the form of
proportions of students scoring within each of five
categories.

The data were trimmed to include only the 15,386
students with scored responses to all 10 items.
Omits and absences were excluded.

The analysis on the primary data set was partially
replicated using scored item responses in nine
other subject areas assessment as part of the
MSPAP. Again, large (> 12,000) numbers of
trimmed item response sets were available along
with the state-assigned score category.

Analysis

Two types of samples were drawn from the
trimmed data set. The first, a sample of 1,000
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students, was randomly selected to form the trial-
sample used to evaluate the model. That sample
was used for all the analyses.

To calibrate the system, random samples of
different sizes were randomly drawn from the
remaining 14,386 students and used to compute
estimates of P(mk) and P(zi|mk). Equation (1) was
then applied to each student in the trial sample and
MAP was used to classify the examinees. The
score classification based on decision theory and
the score classification used by the state were
recorded. The experiment was repeated 100 times
for each calibration group size.

The first analysis examined the examinee-level
accuracy of decision theory scoring. The
proportion of the 1000 trial-sample students
whose predicted score category matched the state-
assigned score category was examined as a
function of the size of the calibration sample.

The second analysis examined the group-level
accuracy of decision theory scoring. The
marginals of the table of state-assigned and
predicted scores were recorded and compared. As
a summary measure, the weighted average of the
absolute value of the difference between the
predicted and actual marginals was computed for
each calibration group size:

d w P m P mk k kk
= −

=∑ $( ) ( )
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5

where P(mk) are the actual proportions of
examinees in category k,  are the$( )P mk

proportions predicted using decision theory,
wk=P(mk), and 3wk=1.0. This index averages the
observed minus predicted error and weights it by
the proportion of examinees affected.

Results

Accuracy at the individual level was defined as
agreement between the classifications predicted by
the model and the actual classifications assigned
by the state using item response theory. Table 1
and Figure 1 show the mean and standard
deviation of accuracy over the 100 iterations as a
function of calibration sample size. With sample
sizes of 1,000 and more, accuracy was
exceptionally high. Approximately 95% of the
classifications predicted by decision theory
matched the categories assigned by the state using
item response theory. Individual level accuracy is
also quite respectable with as few as 100
examinees in the calibration sample. 

As the calibration sample size increases, the
variances of the accuracy estimates decrease. The
variances are small relative to accuracy, implying
that the different random samples used for
calibration would yield comparable results. 

Table 1: Accuracy as a function of
calibration sample size 

Accuracy
Calibration
sample size

Mean Standard
Deviation

25 0.714 0.043
50 0.794 0.039

100 0.860 0.023
200 0.901 0.013
500 0.934 0.009

1000 0.947 0.007
1500 0.952 0.007
2000 0.956 0.006

Based on 1,000 examinees in the trial group and
100 iterations for each calibration sample size.
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Figure 1: Proportion of trial examines accurately
classified as a function of calibration sample size.

Group assignment accuracy was defined as
comparable values of predicted and actual
proportions of examinees in each score group. As
shown in Table 2, the actual proportions of trial
sample examinees in each of the five score groups

are .192, .554, .224, .018, and .012. The predicted
values are quite close. The difference between
predicted and actual proportions is 1.2% or less
when the calibration group sizes are 100
examinees or more. If one just looks at the
proportions of students deemed satisfactory by the
state, i.e., scoring 3 and above, then the results are
even more impressive. The actual percent of
satisfactory students in our trial sample is 25.4%.
With 200 examinees in the calibration sample, the
predicted percent of examinees with satisfactory
scores is 25.3%.   

Another way to assess the correspondence
between actual and predicted proportions is to
examine the weighted average of the absolute
values of the corresponding differences, denoted d
in Table 2. The weighted averages were extremely
low. The proportions of effected examinees is not
meaningful.

The above analysis was partially replicated using
responses to 9 other tests within the MSPAP. In

Table 2: Predicted and actual proportions of examinees in each score group for Reading
Grade 8 test booklet.

Score Group
Predicted
Proportions

Calibration
sample

size

1
(low)

2 3 4 5
(high) d Max dif

25 0.264 0.514 0.204 0.012 0.006 0.0006 0.072
50 0.216 0.556 0.211 0.008 0.010 0.0001 0.024

100 0.196 0.564 0.227 0.007 0.006 0.0002 0.011
200 0.186 0.561 0.240 0.006 0.007 0.0002 0.016
500 0.185 0.560 0.238 0.005 0.011 0.0001 0.014

1000 0.181 0.559 0.242 0.005 0.013 0.0001 0.018
1500 0.180 0.560 0.242 0.005 0.013 0.0001 0.018
2000 0.180 0.560 0.242 0.005 0.012 0.0001 0.018

Proportions
based on
state
assignments

0.192 0.554 0.224 0.018 0.012

Based on 1,000 examinees in the trial group and 100 iterations.
d is the weighted average of the absolute values of the difference between predicted and state-assigned
proportions.
Max Dif is the largest absolute value of the difference between predicted and state-assigned proportions.
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each case, 1000 scored examinees were randomly
selected from the set of all examinees with
complete item responses and used as the trial
sample. Separate random samples of 1,000
examinees were drawn and used to obtain 1) the
proportions of examinees within each score group,
P(mk) and 2) the proportions of examinees with
each item response in each score group, P(zi|mk).
The calibrated a priori probabilities were applied
to the responses of the trial group examinees.
Accuracy and weighted marginal differences were
computed. Again, the process was iterated 1000
times using the same trial response set.

The results of the replication are shown in Table
3. Accuracy is again extremely high, maximum
marginal differences are quite small, and the
weighted average marginal differences are quite
small.

Discussion

Using actual item response data, this study
showed that simple decision theory can yield
exceptionally high classification accuracies. With
a calibration sample of 1,000 randomly selected
examinees from the Grade 8 Reading assessment,
some 95% of the assessed individuals were placed

in the same score category assigned using the
complex machinery of item response theory. With
as few as 100 calibration group examinees,
individual accuracies of 86% were obtained and
the predicted overall proportions of examinees in
each score group differed from the corresponding
actual proportions by less than 1.2%. Comparable
results were obtained on nine other MSPAP tests
using a calibration size of 1000 examinees.

One of the major limitations of the data analyzed
was the relatively small numbers of students in the
top two score groups, 1.8% and 1.2% respectively.
One would suspect that the probabilities of each
item score given membership in one of those two
groups would be poorly assessed, even with large
calibration group samples. With 500 or more
examinees in the calibration group, high- ability
examinees tended to be placed in the highest score
group, rather than group 4. We suspect the results

would have been even more impressive had these
score groups been combined or merged with group
3.

In another study looking at the same Reading
Grade 8 data set, Rudner(2002b) noted that IRT
can be expected to provide the correct individual
true score classification some 81% of the time. So
how could decision theory provide accuracies well

Table 3: Accuracy and differences in predicted and actual proportions
of examinees in each score group for different assessment instruments.

Accuracy
Subject Grade N

items
Mean Standard

Deviation
d Max dif

Mathematics 3 21 0.963 0.008 0.0001 0.015
Social Studies 3 21 0.878 0.015 0.0016 0.039
Science 3 18 0.892 0.013 0.0019 0.053
Reading 5 12 0.924 0.008 0.0007 0.054
Mathematics 5 30 0.929 0.007 0.0009 0.026
Social Studies 5 20 0.854 0.014 0.0008 0.038
Science 5 16 0.884 0.012 0.0012 0.030
Social Studies 8 19 0.911 0.009 0.0016 0.041
Science 8 21 0.959 0.005 0.0001 0.010
Based on 1,000 examinees in the trial group and 100 iterations.
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above 81%? The difference lies in the different
definitions of accuracy. The IRT study compared
scores predicted using IRT to true scores. This
study compares scores predicted by decision
theory to scores assigned using IRT.  In other
words, this study demonstrates that decision
theory can capture those assigned classifications.
Accuracy in terms of true score was not examined.

The simplicity and feasibility makes decision
theory attractive for many applications. Tests
embedded in computer instruction, for example,
could be based on relatively small calibration
samples.  Short tests could be embedded in larger
tests for a relatively small number of examinees to
provide data for comparing assigned proportions.
Subsets of items could be clustered and analyzed
to provide skill level scores.

While this study provides support for the use of
decision theory at the item level, it also raises a
large number of questions for further research.
This study used a handful of information-rich,
polytomously scored items. Will decision theory
work as well for multiple- choice items? How few
items are needed to determine group proportions?
How can we best select items with the goal of
determining group classifications?  How many are
needed to obtain adequate individual classification
accuracies?  What is gained by more items? How
many missing responses can be tolerated? Would
adding a cost structure provide advantages?    

Notes

An interactive tutorial on measurement decision
theory is available at http://ericae.net/mdt/.
Windows-based software for applying decision
theory to test items is being developed and will be
available at that web site.
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